Design and Synthesis of TiO2 Hollow Spheres with Spatially Separated Dual Cocatalysts for Efficient Photocatalytic Hydrogen Production
نویسندگان
چکیده
TiO₂ hollow spheres modified with spatially separated Ag species and RuO₂ cocatalysts have been prepared via an alkoxide hydrolysis-precipitation method and a facile impregnation method. High-resolution transmission electron microscopy studies indicate that Ag species and RuO₂ co-located on the inner and outer surface of TiO₂ hollow spheres, respectively. The resultant catalysts show significantly enhanced activity in photocatalytic hydrogen production under simulated sunlight attributed to spatially separated Ag species and RuO₂ cocatalysts on TiO₂ hollow spheres, which results in the efficient separation and transportation of photogenerated charge carriers.
منابع مشابه
Spatial separation of oxidation and reduction co-catalysts for efficient charge separation: Pt@TiO2@MnO x hollow spheres for photocatalytic reactions.
Efficient charge separation is a critical factor for solar energy conversion by heterogeneous photocatalysts. This paper describes the complete spatial separation of oxidation and reduction cocatalysts to enhance the efficacy of charge separation and surface reaction. Specifically, we design Pt@TiO2@MnO x hollow spheres (PTM-HSs) with Pt and MnO x loaded onto the inner and outer surface of TiO2...
متن کاملSpatial separation of oxidation and reduction co-catalysts for efficient charge separation: Pt@TiO2@MnOx hollow spheres for photocatalytic reactions† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc04163e Click here for additional data file.
Efficient charge separation is a critical factor for solar energy conversion by heterogeneous photocatalysts. This paper describes the complete spatial separation of oxidation and reduction cocatalysts to enhance the efficacy of charge separation and surface reaction. Specifically, we design Pt@TiO2@MnOx hollow spheres (PTM-HSs) with Pt and MnOx loaded onto the inner and outer surface of TiO2 s...
متن کاملHierarchical Heterostructure of ZnO@TiO2 Hollow Spheres for Highly Efficient Photocatalytic Hydrogen Evolution
The rational design and preparation of hierarchical nanoarchitectures are critical for enhanced photocatalytic hydrogen evolution reaction (HER). Herein, well-integrated hollow ZnO@TiO2 heterojunctions were obtained by a simple hydrothermal method. This unique hierarchical heterostructure not only caused multiple reflections which enhances the light absorption but also improved the lifetime and...
متن کاملRoles of cocatalysts in photocatalysis and photoelectrocatalysis.
Since the 1970s, splitting water using solar energy has been a focus of great attention as a possible means for converting solar energy to chemical energy in the form of clean and renewable hydrogen fuel. Approaches to solar water splitting include photocatalytic water splitting with homogeneous or heterogeneous photocatalysts, photoelectrochemical or photoelectrocatalytic (PEC) water splitting...
متن کاملRoles of cocatalysts in semiconductor-based photocatalytic hydrogen production.
A photocatalyst is defined as a functional composite material with three components: photo-harvester (e.g. semiconductor), reduction cocatalyst (e.g. for hydrogen evolution) and oxidation cocatalyst (e.g. for oxidation evolution from water). Loading cocatalysts on semiconductors is proved to be an effective approach to promote the charge separation and transfer, suppress the charge recombinatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017